High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes
نویسندگان
چکیده
Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible operation of the lithium-sulfur dioxide battery is also possible by exploiting conventional carbonate-based electrolytes. Theoretical and experimental studies reveal that the sulfur dioxide electrochemistry is highly stable in carbonate-based electrolytes, enabling the reversible formation of lithium dithionite. The use of the carbonate-based electrolyte leads to a remarkable enhancement of power and reversibility; furthermore, the optimized lithium-sulfur dioxide battery with catalysts achieves outstanding cycle stability for over 450 cycles with 0.2 V polarization. This study highlights the potential promise of lithium-sulfur dioxide chemistry along with the viability of conventional carbonate-based electrolytes in metal-gas rechargeable systems.
منابع مشابه
High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries
Although sulfur has a high theoretical gravimetric capacity, 1672mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low massloading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conductingagent integration is critically important. In thi...
متن کاملComparison of Lithium-ion Battery Cathode Materials and the Internal Stress Development
The need for development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. Lithium-ion batteries operate via an electrochemical process in which lithium ions are shuttled between cathode and anode while electrons flowing through an external wire to form an electrical c...
متن کاملHollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.
Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cyc...
متن کاملSynthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries.
Rechargeable lithium–oxygen (Li-O2) batteries have recently attracted great attention because they can theoretically store 5–10 times more energy than current lithium-ion batteries, which is essential for clean energy storage, electric vehicles, and other high-energy applications. However, to use Li-O2 batteries for practical applications, numerous scientific and technical challenges need to be...
متن کاملModel Membrane‐Free Li–S Batteries for Enhanced Performance and Cycle Life
The success of the rechargeable Li-S cell is limited in part by the dissolution of lithium-polysulfide in the electrolyte. Remarkably, it is found that removal of the conventional membrane separator in a Li-S cell improves sulfur utilization and cycling performance, whether the sulfur is initially contained in the cathode or electrolyte. An optimized cell design yields discharge capacities as h...
متن کامل